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Abstract

We review the standards of relativistic quantum mechanics such
as the Dirac equation under the concept of negative masses. We show
that negative energies are acceptable provided the masses are simul-
taneously negative. Negative energy and mass anti-fermions are ob-
tained from positive energy and mass fermions through a unitary PT
transformation.

1 Introduction

Until recently, the concept of negative masses was relegated to the field of
“exotic”, and even far-fetched, ideas.

Proposed by Hermann Bondi [1] and revisited by William B. Bonnor [2]
in the context of general relativity, negative masses have been considered
by a few physicists only due to the fact that they have never been detected
in laboratories. Let us mention among these avant-garde physicists, M.A.
Markov who, from a previously proposed second-order equation for spin %
particles [3], has put in evidence two first-order equations, one with a ”plus”’
sign and the other one with a "minus” sign multiplying the mass [4]. Never-
theless, for the reason of being qualified as "non-physical”and because they
could imply a very unpleasant “runaway effect”, negative masses have been
rejected by the majority of the scientific community for many years.

However, minds are evolving nowadays : the possibility of negative masses
is seriously reconsidered. As examples, let us mention that negative mass



solutions have been considered within a Schwarzschild—de Sitter geometry
[5] or in various aspects of physics [6], going from wormholes to strings. In
[7], it was shown that negative mass can produce a Schwarzschild solution
without violating the energy condition. The Dirac equation has also been
considered with the two possibilities of signs for the mass and it was shown
[8] that positive as well as negative energies can arise.

Besides these theoretical contributions, a negative effective inertial mass
has been experimentally realized by cooling rubidium atoms with lasers as
stated in [9].

A further reason for this renewed interest in negative masses is the follow-
ing. We have mentioned the “runaway effect” as one of the main causes for
leaving these masses away. What is it from 7 As well known, general relativ-
ity stands that Universe is a manifold equipped with a metric g,, according
to the Einstein equation

1
R,uu - iRguV = XT/W

The matter energy tensor 7),, is the source of the gravitational field.

The paradox comes from the fact that it is arbitrarily assumed that par-
ticles of positive or negative masses immersed in the same gravitational field,
react in the same way. Indeed, as there is only one metric, the effect on
each particle from that field created by a positive or negative (in that case
T — —T) mass is the following :

e Positive mass attracts both other positive masses and negative masses
e Negative mass repels both other negative masses and positive masses

This means that the particle of negative mass pursues, in a uniformly ac-
celerated movement with a conserved kinetic energy, the particle of positive
mass. Indeed, due to their respective signs, the kinetic energy of the positive
mass is simultaneously, while remaining in the same ratio, compensated by
that of the positive mass irrespective of the increase of the speed.

Besides the fact that this “runaway effect” violates the action-reaction
principle, it also disagrees with experimental data [10].

If we deviate from the assumption that positive and negative masses
react in the same way, we need two metrics and a set of two field equations,
generalizing the Einstein one. A model ( the Janus cosmological model or
JCM) with such two coupled field equations has been proposed [11]. The
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subsequent Newtonian approximation provides the following corresponding
interaction rules :

e Positive mass attracts positive masses and repels negative masses

e Negative mass attracts negative masses and repels positive masses

The JCM perfectly fits available observational data [12] and restores the
action-reaction as well as the equivalence principles. This certainly gives
substance to the study of negative masses.

Despite of the growing interest in negative masses, there were very few
papers devoted to the subject within the quantum mechanical paradigm. Let
us cite [13] where the concept of negative mass is used to solve Schrodinger
equations.

The purpose of this article is to initiate a study of the impact of negative
masses on relativistic quantum mechanics by taking a new look at its stan-
dards such as the Dirac equation (for a review of these standards, see, for
instance, Section 2.3 of [14]).

The reason to do so is that relativistic quantum mechanics naturally puts
in evidence negative energies having an unpleasant consequence which can
be avoided if masses are negative, too. Indeed, one of the arguments for
having given up the Klein-Gordon equation is the fact that the density of
probability is, up to the square of a normalization factor, the ratio % It is
obvious to see that this probability is positive if energies and masses have
the same sign. So, negative energies can be restored if masses are negative,
too.

The contents is distributed as follows. In Section 2, we show that if the
time-reversal operator is chosen as unitary, masses become negative (while
an anti-unitary one leads to positive masses). In Section 3, we realize this
unitary operator within the Dirac formalism. States corresponding to an-
tifermions are then associated with negative masses and energies. We con-
clude in Section 4.

We work in the following in the standard units. Greek letters run from 0
to 3 while Latin indices are equal to 1, 2, 3.

2 Unitarity of the time-reversal operator

First, let us recall that a unitary operator U is defined through
<UY|U¢ >=<1|p > (1)
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for all states |1 > and |¢ > of the Hilbert space H. It is also a linear operator
Ualy > +blp >) =a Ul > +bUl|p >, a,be C (2)

An operator A is anti-unitary if it obeys
< AY|A¢ >=<y[p > (3)

where the symbol * denotes the complex conjugation.
Furthermore, it fills a similar relation to Eq. (2) but where the second mem-
ber has been conjugated, meaning that A is anti-linear.

Usually, one can see any anti-unitary operator as the product of a unitary
one and the complex conjugation (i.e. i — —1i).

Such operators are crucial in quantum mechanics due to the fact that
E.P. Wigner [15] showed that a symmetry operator S of a Hamiltonian is
necessarily a unitary one or an anti-unitary one.

In what concerns the discrete symmetries, it is usually understood that
the parity operator P such that

T——Z,p——p,t—t (4)
is a unitary one while the time-reversal operator T implying
r—T,t——t (5)

is anti-unitary (in which case, p'— —p)

The reasons for such a belief are the following ones. First, if we want
the energies to stay positive, we have to add a complex conjugation to the
reversal of time because of the quantization

.0

Second, this is a way to remain the fundamental relation of quantum me-
chanics

[, pr] = @00, (7)

invariant under the transformation PT as its action can be summarized by

r— -7, p—p, E—FE,i— —i (8)



These developments suggest that both energies and masses are positive.
These signs are thus related to an anti-unitary PT.

We argue that they can be understood in a different way.

Indeed, Eq. (6) is coherent with T being unitary if we allow the energy
to be negative while Eq. (7) is still true under a unitary PT in which case
Eq. (8) has to be replaced by

T— -, p—>-p, FE—=>—-FE,i—i 9)

The fact that the sign of the energy changes has consequences on masses.
This can be seen, for example, through the Einstein relation £ = m.

Thus we have two options. The usual one, dealing with an anti-unitary
PT symmetry and ensuring the energies and masses to stay positive together,
and the one we propose, that is a unitary PT symmetry (P and T are both
unitary operators) which allows energies and masses to simultaneously be
negative.

Note that this second path is in perfect agreement with what we know
about the Lorentz group. Indeed, being defined as the group of matrices A
satisfying

A g A =g, g=diag(l,-1,-1,-1)

where AT is the transpose of Athe entire Lorentz group is composed of four
components [16]

o Ll

e Ll =P LT
o L' =T LL
e L =PTL!

where the subscript + denotes the signs of the determinant of A while the
superscript refers to the signs of the first element of this matrix.

As is well known, there are transformations that maps one component into
another. These transformations are nothing but the parity and time-reversal
operators realized here through

P = diag(1,—1,—1,-1) , T = diag(—1,1,1,1) (10)

Let us take a while here to notice that both P and T being realized through
such matrices are linear and unitary.



Only a few components do form a group, i.e. Ll (named the restricted
Lorentz group ; it is the one considered by physicists exclusively concerned
with positive masses and energies ), Ll ULl (named the orthochronous
Lorentz group), Ll U Li (named the proper Lorentz group ), Ll UL* and
the set of four components referred to as the entire Lorentz group.

Only one of these options, the proper Lorentz group, is recognized as a known
Lie group, namely SO(1, 3)

L u PTLl = SO(1,3)

If we now add to these transformations the four abelian translations and
their PT version, we obtain two components generating a subgroup of the
entire Poincaré group. One thing well-known about this group is that it
admits two Casimir operators, the first one having the square of the mass
as eigenvalues. The only requirement on these eigenvalues is their reality.
The mass itself can thus be positive or negative. Besides, the meaning of
the second Casimir operator constructed from the Pauli-Lubanski 4-vector
is clear when limited to isotropy groups. In this case, one can choose a
particular time-like momentum 4-vector, say

m

0
; (11)
0

and see that the second Casimir operator is related, up to the square of the
mass (again. .. ), to the spin of the particles. These are very well-known facts.

Now, let us have a look on the 4-vector (11). If the mass is positive
(respectively negative), it belongs to the future (respectively past) light cone.
An orthochronous transformation is realized through a matrix whose first
element is bigger than one (it is the ”1” symbol). So, when applied to a
4-vector like Eq. (11), it gives rise to another time-like 4-vector within the
same part of the cone light : if the mass is positive and the 4-vector belongs
to the future part, its image will also stand in the future part. If the mass
is negative, the 4-vector lives in the past part and stays in this part after
an orthochronous transformation. Only antichronous transformations (the
71" symbol) can join the two parts. If the mass is positive at the start
and the four-vector oriented from past to future, it will change its direction
but also the sign of the associated mass. This is due to the fact that the
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antichronous transformations result from the application of a unitary PT (=
—diag(1,1,1,1)) on the orthochronous ones, changing the sign of the first
component of 4-vectors. And if the mass becomes negative, so is the energy
through the Einstein relation E' = m for a relativistic particle at rest.

3 Realization of the unitary PT symmetry
for the Dirac equation

Let us now see the impact of a unitary PT transformation on the Dirac

equation.
For recall, the covariant Dirac equation is written as [17]
(V'pu —m) =0 (12)
with the Dirac matrices satisfying
{77} =2¢"", g = diag(1,-1,-1,-1) (13)

We realize these matrices through the so-called Dirac representation i.e.

’7:<—05g>’70:<é—01> (14)

where the ¢ are the Pauli matrices.
The usual unitary parity operator P is realized through

w(t7 ‘f) — 70w<t7 _:Z:> (15>
In what concerns a unitary time-reversal, we have to ask for
Ty (i7°0; + 77 0; — m)T; Ty (x) = (—iy°0; + iy 0; — m)y'(z) =0 (16)

with
r=(t,7) = 2’ = (—t,7) (17)

In other words, we have to search for a matrix Ty anticommuting with ~Y
and commuting with each of the 7’s. This matrix is v'v?+3. Up to a phase,
the action of the time reversal as a unitary operator is thus marked by

U(t, T) = Y'Y Y(—t, ) (18)
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Combined with the parity operator (15), we are led to the following unitary
PT transformation

U(t, T) = iV VP Y(—t, —F) = 2 U (—t, 1) (19)

The PT-symmetry within the Dirac formalism is not just only related to
opposite space-time coordinates, it is also subtended by the +® matrix.

We are used to interpret this matrix as the one realizing the chirality
operator. But it is not just so. Indeed, the +° matrix anticommutes with
each of the v*’s. Acting on the Dirac equation (12), this implies that either
the sign of each of the p,’s has to change (which is expected in a unitary
PT symmetry) or, in an equivalent way, the mass has to become negative.
Such developments can also be found in the quantum field theory context
[18] where it was quoted that the 7° chiral transformation is associated to
the fact that the sign of the mass term in the Lagrangian is reversed. Let us
also mention as an aside that the v° matrix has also been associated to the
charge operator [19]. More precisely, in [19], it was required that the Dirac
parity operator should always be of the form (15) whether it is defined in
the fermion or antifermion wavefunction space. And this had consequences
that the fermion field and the charge-conjugate (related to 7° ) antifermion
field obey opposite-mass Dirac equations. However, despite of the fact that
this approach is close to ours, it is different in the sense that we are not only
in the QFT field but mostly because we are concerned here with negative
energies.

Together with previous remarks, this fact tends to prove that the matrix
~” has not yet revealed all its wealthes...

Anyway, the matrix 75 is essentially considered here as the one for what
we call a M-symmetry : m — —m. Such a symmetry is naturally connected
to a unitary PT-transformation.

Let us now analyse the impact of such considerations on the four solutions
of the Dirac equation.

As well known, the free Dirac equation (12) has positive as well as nega-

tive energies pg = +E, = +/p? +m?2. The four solutions consist in two

solutions with positive energies £ = E, (spin up and spin down, respec-

tively, according to the eigenvalues of the third component of the spin vector
1

S3 = ;5 diag(1,—1,1,—1)) which write in the p-representation (in which p,



now stand for eigenvalues)

1 0
E+m e 0 E+m - 1
v = \/;e (p.3—Et) 03 ) = oF pi(PE—Et) DLip
Etm E+m
pltip2 __p3
E+4m E+m
(20)
and two solutions with negative energies £ = —F, (spin up and spin down,
respectively)
p3 pl—ip2
A B
Yy = b —m ¢i7i=E) | Bom Wy = E—m RICEECON My o=
! 2F 1 » 72 2F 0
0 1

which are replaced by two solutions with positive energies £ = E, (spin down
and spin up, respectively)

p3 pl—ip2
PLii Bty
= E+m o—iwai—E) | Hm = E+m BBt | T Bim
Yo 1 P A2 2F 0
0 1
(21)
by the transformation
p——-p, E——F (22)

Actually, the states (21) are solutions of a slightly different Dirac equation

(Ypp +m)x =0

The changes (22) are attributed to Feynman [20] and Stueckelberg [21], inde-
pendently. They were motivated by two reasons : first, keep positive energies
only and second, give a physical interpretation to these states. Indeed, in
case of an electromagnetic interaction, the corresponding negative energy so-
lutions don’t give back a meaningful Pauli equation at the non-relativistic
limit while the new positive energy ones (21) do with an electric charge hav-
ing been replaced by its opposite. This is what have led physicists to interpret
these new solutions as the ones associated with antimatter.

Let us now analyse these solutions (20) and (21) by keeping in mind that
both energies and masses can be simultaneously negative.
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Besides the bi-spinors, we notice that the link matter-antimatter is related
to the following transformation of the exponential

ei(ﬁ.f—Et) N e—i(ﬁ.f—Et) (23)

which can be performed in three different ways.

First, the complex conjugation : this is the path followed by Dirac [22]. Its
anti-unitary charge conjugation operator is just the complex conjugation in
the Majorana representation but writes

C=iyC (24)
in representation (14).
It is easy to verify that
C i (z) =x3 (2), Oty (2) = —x{ () (25)

The anti-unitary charge conjugation operator thus transforms positive energy
and mass fermions into positive energy and mass anti-fermions. The mix
between 1 — X2, 2 — x1 in Eqs (25) is related to the fact that the charge
conjugation operator is such that

Ps7,p——p=>L——L (26)

Consequently, the sign of the spin vector has also to change in order to stay
coherent. This implies that C' acts on spin up (resp. down) v-states to give
spin up (resp. spin down) y-states. Let us insist on the fact that these
developments concern the first quantization field only. In quantum field
theory, the charge conjugation operator is somewhat different and appears,
in particular, to be unitary.

Second, the transformation (22) : it is what Feynman (and Stueckelberg)
proposed. This is associated to an anti-unitary PT transformation in the
quantum field theory context. However, when we limit ourselves to the first
quantization as we do here, such a transformation cannot relate -states to
x-states. Indeed, the anti-unitary reversal-time transformation would be the
one ensuring a relation similar to (16)

Tav (170, + 177 0; — m) Ty Tavt (z) = (i7°0, —i(?)*0; —m)y (2') = 0 (27)
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meaning that Ty has now to commute with 4° and 4? (the only matrix
among the 77’s to have imaginary elements) and anticommute with ! and
3. In other words, the action of Ty would be such that

U(t, T) = iy o(—t, D) (28)

for the Dirac equation we are concerned with. Combined with the parity
(15), it gives rise to the following anti-unitary PT

V(t,T) = iy Y Y(—t, —2)* (29)

which it is easy to see that it simply connects positive energy and mass
fermions to positive energy and mass fermions

VY (=) = =3 (2) . APy s (<)t = o (@) (30)
This is in complete agreement with what we quoted in Section 2 : only
unitary PT can rely the two parts of the light cone.

So, we come to the third proposal : a unitary PT as given in Eq. (19)
which, let us insist on that point, does not only perform the change (23) by
replacing the coordinates by their opposites but also implies the M-symmetry
m — —m.

The explanation is obvious when considering the Dirac operator

E—m —dp
S 31
( op —E-—m ) (31)
acting on bi-spinors to give 0. There are two options only : either you perform
the changes (22) and leave in particular the negative energies to concentrate

on positive ones
—E—m op
—op E-m

or you choose to keep the negative energies but then, you are obliged to
consider, simultaneously, negative masses

E+m —cp
op —FE+m
So, this third solution, based on a unitary PT, also leads to the solutions
(21)
VYT (=) = x{ (2) , 7°¢5 (—2) = x5 (2) (32)

11



as it can be easily verified, with the difference that the anti-fermions (21)
now have negative energies and masses.

We insist on that fact : the y-states as in Eq. (21) remain the same but
are interpreted in a different way. Under the unitary PT transformation, the
following changes arise

E——-E,m—=—-m, x,— —T,, Pp — —Pu

but they leave the different elements of the y-states invariant whether it is
the normalization factor
E+m

2F

the plane wave part
o—i(FF—EY)

or the fractions inside the bi-spinors because the signs of both numerators
and denominators simultaneously change.
Another point is the fact that, in Eq.(32), by opposition to Eq.(25), the
unitary PT connects the sectors 11 — x1, Y2 — x2. This is due to the transfor-
mations of such an operator on position, momentum and angular momentum
operators

T—T,p>p=>L—1L (33)
(compare with Eq.(26)) implying the conservation of the spin vector. This
implies that unitary PT acts on spin up (resp. spin down) 1-states to give
spin up (resp. spin down) x-states.

4 Conclusion

We have shown that negative masses can take place in relativistic quantum
mechanics up to the condition of being related to negative energies. The uni-
tary PT transformation we propose acts on states associated with positive
energy and mass fermions to give states associated with negative energy and
mass anti-fermions. This is an alternative to the anti-unitary charge conju-
gation operator leading to the same states but then subtended by positive
energy and mass anti-fermions.

We argue, in complete agreement with [11], that there are two types of anti-
matter. The "classical” one, created in laboratories and associated with an
anti-unitary PT, and the primordial antimatter reached by the unitary PT,
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composed of the same elements, this time with a negative mass and energy.
It is this antimatter of negative mass (what we call negative antimatter)
which is responsible for the acceleration of cosmic expansion, for the confine-
ment of positive mass objects, the spiral structure, strong gravitational lens
effects and so on.

Is there any place for a (unitary or anti-unitary) charge conjugation oper-
ator leading to this negative antimatter 7 This question remains open at
this stage as well as the extension of our results to the quantum field theory
context.
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