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Chapter 3

O n O n e C la s s  o f  E x a c t  
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E  -  E q u a t io n  f o r  t h e  P o t e n t i a l
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A b s t r a c t

During the integration of Emden’s E-equation for the density of a gaseous sphere a 
mathematical problem of choice of boundary conditions emerges. The complete system 
of equations that is being solved with respect to the potential can be reduced to a three- 
dimensional equation of the same form. In this article it has been shown, that the correct 
choice of the boundary conditions in the equation for the potential can not be arbitrary 
when solving a spherical problem of self-consistent gravitation theory, but is prescribed 
by the first integral of total pressure that exists in a plane-symmetric system. Solutions 
obtained here describe the distribution of physical characteristics in astrophysical objects.

Keywords: Emden’s E-equation, boundary conditions, self-consistent gravitation theory, 
integral of total pressure, astrophysical objects

1. In t r o d u c t io n

Emden E-equation, derived in [1], belongs to the class of ordinary second order 
differential equations. Together with Lane-Emden equation it played an important role at the 
first stage of finding solutions of problems of stellar structure. Stars have been considered as 
gaseous formations that stay either in polytropic equilibrium or in balance with uniform
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temperature distribution [2]. While solving the spherical problem of density distribution in a 
system with uniform temperature distribution, Emden could not find the analytic solution, 
which would reach a maximum density in the center of the sphere.

Independently o f Emden’s research and, seemingly, not knowing about it, Frencel in 
1948 introduced the similar method of calculating the fields of gravitating particle for systems 
with the constant temperature, and named the macroscopic fields being created by them as 
self-consistent ones [3]. While Emden has derived the equations for the density of stellar 
matter, Frencel was the one to express them in terms of the potential of gravitational field 
being formed by the cluster. Trying to solve the problem of the density distribution in a 
spherical cluster, he had come to an unexpected conclusion that solutions obtained were 
leading to meaningless physical results.

In this notice it is shown, that the correct choice of the boundary conditions while solving 
a spherical problem of density distribution in a self-consistent system cannot be an arbitrary 
one, but is prescribed by the fundamental law of total pressure conservation, existing in the 
plane-symmetric system.

2. T h e  M a in  E q u a t io n s  o f  t h e  P r o b l e m

To generalize Emden’s paper [1] and to exploit Frencel’s approach [3], let us write the 
three-dimensional equations of gravitational statics in a modern notation of vector analysis

p g  + f  = 0 ; (2 .1)

d iv g  =  - A n G p ; (2 .2 )

g  = - g r a d (  (p) ; (2.3)

p  =  p k T /  m ; (2.4)

7  =  —g r a d f  p ) . (2.5)

There p  is the mass density of an elementary unit, g  — the strength of the macroscopic 

gravitational field, p  -  the pressure inside the system, T  -  the absolute temperature of the 
system, cp -  the potential of the self-consistent field, G -  the gravitation constant, m -  the 
mass of a gravitating particle, к — Boltzmann constant.

The first equation of the system represents the balance condition of an elementary 
volume of the system of gravitating particle. The second one is the differential form of the 
Newton’s law that describes divergent static fields of smeared mass. The equation (2.3) 
relates the potential to the strength of the gravitation field, and (2.4) -  the equation of state 
with uniform temperature. The equation (2.5) is the definition o f Bernoulli’s gas-static force. 
Notice, that the relation between the strength of the field and the potential (2.3) was not been 
applied by Emden in his study.
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Let us show that the complete system of equations (2.1-2.5) describes the collective 
interaction among gravitating particles, where the back action of the field on the particles, that 
generate this field, is manifested.

3 . F ie l d  E q u a t io n  o f  s e l f -c o n s is t e n t  G r a v it a t io n  T h e o r y

Substituting (2.5) and (2.3) into (2.1), we get

pgrad( (p) + grad( p )  = 0 . (3.1)

By taking into consideration the equation of state (2.4) and the fact that the temperature is 
uniform, let us reduce (3.1) to the form

/  mcp л
g r a d ------- V In p

i kT
= 0 . (3.2)

J

It is obvious from (3.2) that any equilibrium of gravitating particles with the field is 
characterized by the scalar integral

Г̂ ~  + ln  p = m<P° + ln  P q =  c o n s t , (3.3)
kT kT

where /^an d  Щ are constants. Bolzmann’s distribution function follows from (3.3)

p  = p Q e x p \-m (c p  — (p0 )  /  k T \  (3.4)

By substituting (3.4) into (2.2) we express everything in terms of cp and convolve the 
system of equations (2.1) -  (2.5) into one equation (i.e., carry out the process of making the 
system self-consistent)

/S.cp =  47iGp0 e x p \-m (c p  — (pQ) /  k T \ .  (3.5)

The equation (3.5) is a three-dimensional field analog of Emden’s E  -  equation. This 
equation describes the distribution of macroscopic potential of dynamic systems of particles 
with uniform temperature. The particles are in a static equilibrium with the self-consistent 
field. The positive sign of the right-hand side of the equation (3.5) denotes that the system 
consists of particles that interact according to the Newton’s law. The equation (3.5) was first 
derived by Frencel in [ 3].



44 V.G. Sapogin

4 . F i r s t  I n t e g r a l  o f  E m d e n ’s  E  - E q u a t io n  f o r  P l a n e -  
S y m m e t r ic  C a s e

The equation (3.5) for plane-symmetric case has the form

q f  = A7rtJp0 e x p \-m (c p  — (pq) / к Т ] , (4.1)

where the primes denote derivatives with respect to the л-coordinate.
The order of the equation (4.1) can be reduced. It has a first integral, corresponding to the 

total pressure of the system [6 ]:

system in the plane <p, and p () = p ^ k T /  m  — n0k T  -  the pressure of gravitating particles of 

the system in the plane (p = (pQ.

Total pressure P of the system in (2.4) consists of two terms: the first one represents the 
pressure of the self-consistent field of the system, and the second one -  the gas-kinetic 
pressure of the particles. The first integral (4.2) coincides with the Hamiltonian function, 
where canonically conjugated quantities are the generalized momentum <p' /  4лСт and cp is 

the generalized coordinate. Coordinate x  acts as the generalized time.
Equation (4.2) is satisfied under the conditions of the absence of any external static 

gravitational fields, considered with respect to the self-consistent field of the system. The 
class of even functions and their derivatives is always set in such way that the sum of 
pressures of the field and particles of the system would be invariant at any plane inside the 
system.

The conservation law (4.2) also means that in any plane of the system being considered 
the gradients of self-consistent field and particles of the system are equal and opposite. The 
volume density of Bernoulli force (further denoted just as Bernoulli force) (2.5) is opposite to 
the pressure gradient of the particles. It receives a new mathematical definition in the system 
under consideration. The Bernoulli force 1) has the same value and direction as the pressure 
gradient of the self-consistent field; 2) balances Newton’s forces o f gravitation; and 3) 
provides a class of equilibrium states of particles with the field, being generated by these 
particles.

Substituting the mass density from the equation (2.2) into (2.1), we derive the connection 

between the Bernoulli force and the pressure gradient of self-consistent field Gg

8 ttG (4.2)

where p (c p )  — p 0 e x p \-  m(q> — с р § ) /к Т \  -  the pressure of gravitating particles of the

(4.3)



On One Class of Exact and Approximate Solutions of Emden’s E -  Equation . 45

which together with (2.5) gives the physical condition of confinement of the substance by the 
self-consistent field

G 4 +  g ra d ( p )  = 0 . (4.4)

Equality (4.4) points to the earlier unknown property of gravitation self-consistent field to 
hold an inhomogeneous system of particles in a restricted space by static forces of field 
origin.

It follows from this equality that the system of collectively interacting particles is in a 
static equilibrium with the self-consistent field of gravitation only when the sum of the 
gradients of field pressure and particle pressure is equal to zero. This equality has to be 
satisfied in any arbitrarily elementary volume of the system. The condition (4.4) is rather 
strict and permits to reject the nonphysical solutions of the system (2.1) -  (2.5).

5. D is t r ib u t io n  o f  P h y s ic a l  P a r a m e t e r s  in  a  P l a n e - 
s y m m e t r ic  S y s t e m

After integrating (4.2) using the condition that the potential reaches an extremum ф' =  0 

with the value (p$ (it’s realized, w h en P  =  p 0 ) and putting this extremum in the origin of 

coordinates x=0, we derive the law of the distribution of the potential along the coordinate

2  k T
ф = ф0 -\-------- In

m
ch\

,

\x
(5.1)

where

I =  y jk T / ( 2 л О т р 0) (5.2)

and it is characteristic spatial scale of the system.
The potential distribution along the coordinate depends on two parameters, as one can see 

from (5.1). They are the temperature T and potential cp0. The distribution has a form of a 
potential well with infinite walls, which has minimum with a value cp0 in the plane x=0 .

The distribution of the projection of the strength of the gravitational self-consistent field 
along the coordinate of the system is derived according to the law:

2 k T
gx =-q>' = ---------- t h ( x / l ) .  (5.3)

m l
One can see from (5.3) that the field strength of the system vanishes in the plane a -0 , and 

when x / l  —> ± °o  g x —» ± g * , where g* =  2 k T /  ml  =  -Js~лСр\) -  the scale of the field.
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The system is not spatially confined, since the mass density, number density and the 
pressure of particles have a soliton-like distribution with a maximum at the bottom of the well

—  = ^ -  = ch~2( x / l ) .  (5.4)
A) «о Po

As it is seen from (5.3) and (5.4), the field pushes out the particles into the regions in 
which the potential energy of the system is minimal, and the value of the field stays the same 
in the regions devoid of matter.

The distribution of the field pressure along the coordinate of the system follows from
(5.3):

D  = (<p'f / 8 n G  = g h h 2( x / l ) / S 7 i G .  (5.5)

One can see from (5.5) and (5.4) that the sum of the pressures of particles and field of the 
system in any plane of the interaction space stays constant and equal to the total pressure of 
the system P=po, which is the integral of the system. By taking a derivative of (5.5) one can 
show that the pressure gradient of the field in any plane of the system is opposite to the 
pressure gradient of the particles that is derived from (5.4), and is equal to it in the absolute 
value:

d D / d x  =  - d p / d x  =  2 g * th ( x / 1) /[Z n G lc h 2( x / 1) ]  . (5.6)

The directions of the gradients allow one to ascertain the directions of the volume forces 
that hold the system examined in balance. Newton’s forces, compressing the system o f the 

particles, are directed towards the plane x= 0  and coincide with the direction of the g  vector. 
Bernoulli forces, expanding the system, are created by the pressure gradient of the self- 
consistent field (4.3), which balances out the action of the pressure gradient of the particles.

The mathematical equalities (2.5) and (4.3) point the dual role of self-consistent field that 
generates the configuration of a trap. On one hand, the field creates the pressure gradient in 
the matter which is aligned with the vector of the field strength (2.3). On the other hand, this 
field creates the static force (4.3), which balances out the arising gradient.

One can formulate the field boundary conditions that are adequate to the problem under 
consideration as following: there must be a surface in the system, where the pressure of the 
self-consistent field vanishes, and where the potential is minimal.

In the plane-symmetric case this point is chosen to be at the origin of the coordinates of 
the system. In the spherically-symmetric case such a choice would be difficult. As it is shown 
in the next section, these boundary conditions can be realized at a finite distance from the 
center of the system.
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6. S o l u t i o n s  o f  E m d e n ’s  E  - E q u a t io n  in  a  S p h e r i c a l l y  
S y m m e t r ic  C a s e

Let us write down the equation (3.5) for spherical symmetry, taking into account only the 
radial dependence of the potential:

where n0 = p 0 /  m  is the value of the number density of particles of the system on a sphere 

(p = (pQ, and primes denote derivatives with respect to r.

Changing the variables in (6 .1 ) to the function (p(v)  = —2 k T y ( x ) /  ТП of the variable 

x -r /R , where R is the radius of the sphere on which the field boundary conditions are being 
specified, we reduce (6 .1) to the form

is the characteristic temperature of the system (primes denote derivatives with respect to л). 
The parameter of state of a spherical system /3 can be interpreted in two different ways. On 
one hand it allows one to compare the temperature of the system with the characteristic one.

conditions are specified with the spatial scale of the system / (5.2).
Let us look for the solutions of (6.2) with the boundary conditions X =  1, y ( \ )  =  0, 

y ' ( l )  =  0 , which assume the existence of a sphere with zero field pressure in the cluster. 

Changing the variables to the new function

cp" + 2cp' /  r  -  ArrGmriQ e x p \-  m ( (,o — cpq) /  k T \ (6.1)

xy" + 2у  + (52x exp( 2 v) -  0 , (6.2)

where

2 7iGm2n0R 2 _ T *  _  R 2 

~kT ~  T  ~  I 2
(6.3)

is the parameter of state of a spherical system and

27iGm1 n0R 2 (6.4)

On the other hand it allows one to compare the radius of the sphere on which the boundary

we derive the equation
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~ ~ 2  +  ~77 = \ ~  f t 1 exp( 2  Г/)
d g

(6.5)

drj
with the boundary conditions i=0, r\(())=(). — - ( 0 )  = 1 , the order of which can be reduced

dM
by the change of variable to the new function

, , drj d~ri dp
p( r i )  = ~7J ; — - Р , -  d q  d% - dri

The first-order differential equation

p  + p  = 1 “  P 2 exp( 2r!)drj
(6 .6)

has the ij=0, p(0)=l boundary conditions. It cannot be integrated in elementary functions.
We have carried out a numerical solution of the equation (6 .6 ) for a set of integral curves 

that pass through the point at which the boundary condition is set. The solution shows that a 
singular point of Emden exists when ii=?i*>0, in which p —> 0 and d p / d l j  — oo. 

Figure 1 shows four integral curves in p  = p ( z )  coordinates, where z  =  1} . The curve 1 has 

been calculated for /2=0.5; the curve 2 -  for /?= 1.0; the curve 3 -  for p=\ .5; the curve 4 -  for 
(3= 2.0. As one can see from figure 1, the position o f Emden’s singular point depends on the 
value of f f . For small [У this point is located far from the origin of coordinates z=r/=0. For 
values /i2»  1 the singular point approaches the origin of coordinates from the right. This 
allows one to find an approximate solution (6 .6 ) when the condition /32» !  is valid.

variab le  z

Figure 1. Integral curves p=p (z).
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Let us solve (6 .6 ) with respect to derivative:

dp _ \ - f t 1 exp(2r)) 1 (67) 

dr/ p

Under the condition

f t 1 e x p (2 r j)  /  p » \ / p - \  (6 .8 )

the equation (6.7) can be shortened

dp _  P 2 exp( 2?7 ) 
dr/ p

and integrated

p = ^ \ - p 2[exp( 2 r j ) - \ ) \ .  (6.10)

Let us figure out the P values for which the approximation (6 .8 ) is valid. Let us put (6 .8 ) 
in the following form:

P 2 » ( \ - p ) e x p ( - l 7 j )  = f ( T ] ) .

The maximal value of the function f  ( i j )  from the right-hand side part is achieved at 

the value 77= / 7*. Then the approximation (6 .8 ) is realized when

1 « 1  ( 6 . 11 ).
P 2 + 1

This condition is satisfied even for /3=3 and is improves with f3 growing.
Coming back to the original function ф ( г )  in (6.10), we derive a two-parameter family 

of curves, which describe the distribution of the potential along the coordinate of the system 
in the case when temperature of the system is less than the characteristic one (a cold cluster):

^  = ^  + ln 
Ф* (ft* r ^ p 2 + \

(6 .12)

where <p* = 2 k T /  m  is the scale of the potential,
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A = Arch
+ 1

■In
Л гЛ

v t f /
л / а 2 +  1 .

p  and are the parameters of the distribution.

The expression (6.12) allows one to derive an analytic form of the main gravity-static and 
kinetic characteristics of a cluster in the case when ( ? » \ .  The projection of the r-th 
component of the strength of the self-consistent field is derived from (6 .1 2 ) and has the 
following form:

Mr.
go

RB
:

r
(6.13)

where

g 0 = — ; в = 4 р 2 + Щ А ) - i.
ml<

The distribution of the mass density, the number density and the pressure of the particles 
in the cluster are the following:

_P_ =  _P_ = J L  
Po Po n 0

fir

R +1
rch( A  ) (6.14)

The pressure of the self-consistent field inside the cluster follows the law:

D
g 2QR 2B 2

SttG S n G r
(6.15)

The projection of the radial component of the gradient of the particle pressure has the
form

dp  _ 2 p 0R 2( /32 + \ ) B  

d r  p 2r ' c h 2( A  )
(6.16)

The derivative of the self-consistent field pressure changes inside the cluster according to 
the law

d D  _  g y R  В2 d 2 d (  p i

dr 47zGY ch ( A )
+  B (6.17)
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As one can see from (6.12), the radial distribution of the potential depends on two 
parameters. It has a form of a potential well with infinite walls, which has a minimum 
cp = (pG at the sphere of zero field pressure.

The sphere of the zero field pressure divides the entire interaction space of the cluster in 
two regions, the interior 0 < r / R  <  1 and the exterior r / R  > 1  one. In the interior region 
the strength of the self-consistent field and the radius-vector have the same direction. In this 
region the pressure and the number density of the particles increase while the potential 
decreases when r grows.

In the exterior region the direction of the strength vector of the field is opposite to the 
direction of the radius-vector. In this region the pressure and the number density of particles 
decrease, while the potential increases when r grows. Inside the cluster the number density of 
the particles changes smoothly, so the system has no sharp borders.

Since the field pushes out the matter into the region with minimal potential energy, when 
/32 is large, a cavity is formed inside the cold cluster, in which the matter is virtually absent. 
The results obtained in this work refine the solutions that were found in [4]. The monograph 
can be found at the web site egf.tsure.ru (in Russian). The exact solutions of the Emden’s E  -  
equation for a cylindrically symmetric case have been derived in [5].

A numerical solution of the exact equation (6.1) with <p(R) =  (p(), cp'( R )  =  0 boundary 

conditions has been found. Figure 2 shows the spatial distributions of the normalized particle 
number density n / n 0 of a spherical cluster with uniform temperature for the various

parameters of state. The curve 1 has been calculated for the value /7=0.5; the curve 2 -  for 
/3=0.1', the curve 3 -  for /3=1.0; the curve 4 -  for (3= 3.0. On this figure one can see the way 
the filling of the cluster by the particles changes when its temperature is varied in the vicinity 
of the value T~T*. The curve 4 shows that a cavity exists inside the cluster and curves 1, 2 , 3 
point out the fact that when the temperature grows, the net interaction volume of the cluster is 
overall being filled by particles and the number of them increases. The number density of 
particles in the center of gaseous sphere goes to zero for all curves.

7 . E s t im a t io n  o f  P a r a m e t e r s  o f  A s t r o p h y s ic a l  O b je c t s

Let us show in the conclusion that the problem solved is related to astrophysical objects. 
We shall make an estimate for a hollow gaseous sphere, consisting of oxygen, which has a

maximum density of P q = 1.33 kg/m at the zero field pressure sphere, at a temperature of 

T=293 К  with corresponding pressure 105 Pa. Supposes the mass of gravitating particle m is 
the same as the mass of oxygen molecule 5.32 10 “6 kg.

For these numbers the spatial scale of the system (5.2) is /=1.2-107 m. For a state 
parameter /3=3 the radius of the zero field pressure sphere is /?=3.6-107 m, which 
approximately 5 times bigger than the radius of the Earth.
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Normalized coordinate r/R

Figure 2. Distribution o f  particles’ concentration in the sphere cluster.

The radius of the cavity is Tj =  0,6i? =2.16-107 m  (to make the estimate we cut the

number density at the value of n-0.2n0 -  see figure 2). The external radius of the gaseous

sphere is =  1,67? =  5.76-107 m. With an average density in the layer < p  >=0.133 kg/m the

mass estimate of the hollow gaseous sphere has the value of 10 23 kg that somewhat exceeds 
the mass of the Moon.

Let us make an estimate for the hollow gaseous sphere consisting of icy nano grains with 
a diameter of 40 nanometers, with the mass of the grain m-ЗЛО'20 kg and the maximum 
density on the zero field pressure sphere p 0 =80 kg/m3. The gaseous sphere has a

temperature of T=250 К  with number density n{) — 2.7-1021 m .

For these numbers the spatial scale of the system (5.2) is /=1.85-103 m. For a state 
parameter /3=3 the zero field pressure sphere radius is R=5.6-103 m. The radius of the cavity is 

Г] =  0 ,6R  =  3.3-103 m. The external radius of the sphere is =  1,6R  — 8.9-103 m. With an 

average density of the layer < p  > = 8  kg/m3 the estimate of the mass of the sphere has a value 
of 2 2  billion ton.

Such a cosmic “snowball” with a size of the order of 20 km can not explode during the 
fall. Descending with the velocity of the order of 40 km/s towards the surface of the Earth, it 
can do vast destructions very similar to those that have been done by the Tunguska 
phenomenon. Since the sphere has an internal cavity devoid of nano grains, the flux density 
of the particles incident upon the surface will be substantially lower in the center of the 
impact than in the neighbouring layers [4]. This will cause minimal destructions at the 
epicenter of the impact.
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C o n c l u s io n

The conception of collective interaction of the gravitating particles in the system with the 
uniform temperature has been founded. The complete system of equations describes such 
interaction among the gravitating particles where the back action of the field on the particles 
that generate this field is manifested.

The back action of the field on the particles shows the existence of Bernoulli force, which 
has the field origin, in the system. This force has the same direction as the pressure gradient 
of the self-consistent field and compensates the Newton’s forces o f gravitation in any 
arbitrary elementary volume of the system. Otherwise, the system of collective interaction of 
the particles is in a static equilibrium with the self-consistent field of gravitation only when 
the sum of pressure gradient of the field and pressure gradient of the particles is equal to zero 
in any arbitrary elementary volume of the system.

Therefore, the first integral of a plane-symmetric system consists of two terms. The first 
one represents the pressure of the self-consistent field of the system, and the second one is the 
gas-kinetic pressure of the particles. The distributions of potential along the coordinate 
depend on two parameters, which are the temperature and the minimal value of the potential. 
They represent the potential wells with infinite walls, which have the minimal value of the 
potential at the bottom of the well. The field pushes out the particles into the region with the 
minimal potential energy of the system and remains the uniform one in the regions devoid of 
matter. The exact solution, obtained in the plane-symmetric case, allows one to specify the 
boarder conditions, which are adequate to the problem under consideration, i.e. there must be 
a surface in the system where the pressure of the field vanishes, and the potential is minimal.

The approximate solution in a spherically symmetric case for the border conditions of the 
field is derived only when the temperature of the system is less than the characteristic one (a 
cold cluster). This solution demonstrates that the radial distribution of potential also depends 
on two parameters. It has a form of potential well with infinite walls, which has a minimum 
on the sphere of zero field pressure, and the radius of the sphere is finite. In this case the field 
pushes out the matter into the region with minimal potential energy too. For the large values 
of the state parameter the cavity is formed inside the cold cluster, in which the matter is 
virtually absent. The numerical solution of exact equation points on the fact that the number 
density of the particles in the center of the system goes to zero for any values of the state 
parameter.

The self-consistent field, which generates the configuration of a trap, plays dual role. On 
one hand, the field creates the pressure gradient in the matter, which is aligned with the vector 
of the field strength. On the other hand, this field creates the static Bernoulli force, which 
balances out the arising gradient.

The conception of the collective interaction formulated is related to astrophysical objects. 
The estimations executed for the hollow gaseous balls give the proportions observed of the 
systems. The hypothesis that the Tunguska phenomenon is a hollow cosmic “snowball” with 
the huge mass, consisting of icy nano grains, has been expressed. The destructions have been 
done in the epicenter by the impact o f such “snowball” are minimal due to the cavity inside 
this “snowball”.
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